Gait Predictive Model

By: Matt Sargent, Josh Franks, Thomas Towey, and Jillian Seymour

Our Plan: two-part gait analyzation

Part 1: Accelerometer

- "Physics toolbox accelerometer"
- Used to quantify g-force over time
- Shows the specific acceleration patterns a specific person's gait

Part 2: Physical Gait Analysis

 use of markers to measure other gait components such as:

-stride length

-degree of movement during various stances of the walk

Graph #1

Graph #2

- Analyzing these graphs can let us predict who is taller and heavier
- Graph #1 has a peak of almost 2 G's
- Graph #2 has a peak of around 0.6 G's
- Generally, the individual's graph with the higher G-Force will be taller and heavier

Step I: Measurements

Taking precise measurements will help us model an individual's gait later on.

	matt	jill	thomas	josh
height	180.34	162.56	172.18	187.96
hip hieght	104.14	39	99.06	99.06
knee height	56	45.72	53.34	58.42
shoulder height	153	132	149.86	152.4
hip width	35.56	34.29	33.02	39.37
shoulder width	45.72	36	40.64	48.26
arm length	70	62	68	69.85

*we also noted preexisting conditions/injuries that may have and effect on gait

Step 2: Record gait on video

- Each group member wore markers on the midpoints of the ankle, knee, and hip
- All walked a 10 foot distance in a straight line
- We chose to use images from 3 points in the walk:

-initial middle stance

-terminal stance

-secondary middle stancem (opposite)

Initial Middle Stance

- All weight is on one foot
- Standing leg is perpendicular to the ground
- We measured the degree the swinging leg was lifted at this moment
- Shows how much each person picks their feet up when they walk

example ·

Terminal Stance

- Weight is distributed between 2 feet
- Feet are at max. distance apart at this position
- Stride length is measured here (toe to toe)

Secondary Middle Stance

- All weight is on one foot
- Standing leg is perpendicular to the ground
- Measure degree if lift on opposite leg
- Allows us to analyze gait symmetry

Results & drawn conclusions

Josh's gait lacks symmetry because of knee injury

	matt		thomas	jill		josh	
deg. of lift-initial	,	110	165		140		152
deg. of lift-2nd		112	170	145			180
stride length	60 cm		72 cm	49 cm		66 cm	

Matt picks up his feet a lot when he walks

Jill takes short steps

(3.31f)+(2.87l)

- Average correlation of height as related to stride frequency and length
- Let f = stride frequency
- Let I=stride length
- Use of 2 types of data improve the accuracy of the equation
- Coefficients can be tweaked for accuracy with the addition of more raw data

